Parameter estimation for 3-parameter generalized pareto distribution by the principle of maximum entropy (POME)

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter estimation for 3-parameter generalized pareto distribution by the principle of maximum entropy (POME)

Abstract The principle of maximum entropy (POME) is employed to derive a new method of parameter estimation for the 3-parameter generalized Pareto (GP) distribution. Monte Carlo simulated data are used to evaluate this method and compare it with the methods of moments (MOM), probability weighted moments (PWM), and maximum likelihood estimation (MLE). The parameter estimates yielded by the POME ...

متن کامل

Parameter Estimation for the Truncated Pareto Distribution

The Pareto distribution is a simple model for nonnegative data with a power law probability tail. In many practical applications, there is a natural upper bound that truncates the probability tail. This paper derives estimators for the truncated Pareto distribution, investigates their properties, and illustrates a way to check for fit. We illustrate these methods with applications from finance,...

متن کامل

A Comparison of Algorithms for Maximum Entropy Parameter Estimation

Conditional maximum entropy (ME) models provide a general purpose machine learning technique which has been successfully applied to fields as diverse as computer vision and econometrics, and which is used for a wide variety of classification problems in natural language processing. However, the flexibility of ME models is not without cost. While parameter estimation for ME models is conceptuall...

متن کامل

Maximum Entropy Distribution Estimation with Generalized Regularization

We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, inc...

متن کامل

Fast parameter estimation for joint maximum entropy language models

This paper discusses efficient parameter estimation methods for joint (unconditional) maximum entropy language models such as whole-sentence models. Such models are a sound framework for formalizing arbitrary linguistic knowledge in a consistent manner. It has been shown that general-purpose gradient-based optimization methods are among the most efficient algorithms for estimating parameters of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hydrological Sciences Journal

سال: 1995

ISSN: 0262-6667,2150-3435

DOI: 10.1080/02626669509491402